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ABSTRACT 
UPDATED—30 November 2019. We propose a bring home 
conversational agent with the objective to keep the host 
engaged in intellectual conversations. The proposed solution 
is (a) an ensemble open context, open domain question 
answering agent that is capable of answering questions in 
context and is rooted in knowledge based methods with self-
structured memory (b) undertakes supervised learning in the 
form of curiosity questions to fill gaps in knowledge and (c) 
uses a reinforcement learning mechanism to predict k-future-
turns to allow optimizing long term rewards. We sanity 
check the performance against popular conversational and 
question answering challenges with future work directed 
towards empirical studies.  
Author Keywords 
Open domain; Question Answering; Open Context; 
companion agent; knowledge-based ML ensemble, agent 
memory.  
CSS Concepts 
• Human-centered computing~Natural language 
interfaces   • Human-centered computing~Collaborative 
interaction   • Computing methodologies~Reasoning about 
belief and knowledge   • Computing 
methodologies~Information extraction 
AIMS AND OBJECTIVES 
The overarching goal of the project is to build a natural 
language conversational agent that is capable of holding 
intellectual conversations. This involves: 

1) Being able to understand and answer single turn 
open domain factual questions E.g. “What is the 
capital of USA?” 

2) Being able to understand and answer context-based 
questions such that the answer to the question relies 
on additional information gathered from a part of 
the question. E.g. “What is the next movie of the 
actor who played Jim in The Office?” 

3) Being able to understand and answer questions in 
multi-turn conversations such that the question 
involves coreference from previous dialogues. E.g.: 

a. User: Who is the president of United 
States? 
Agent: Donald J. Trump 

b. User: And of France? 
Agent: Emmanuel Macron 

4) Being able to give data driven responses that are not 
bald. (based on user preferences or factual 
knowledge). For e.g. 

Old conversation snippet new conversation 

User: I just got a blue 
Tesla 

Agent: wow, that’s 
great! 

User: I am going to paint 
my room. 

Agent: Good luck. Are 
you painting blue? Like 
your blue Tesla. 

- User: I am going to 
Kasukabe tonight! 
Agent: Have a great time! 
You’ll love it! Try 
Onsake, the best in town. 

 

To achieve this behavior, the agent relies on an ensemble of 
retrieval and learning techniques: 

a) Deep Learning based machine reading at scale that 
involves machine comprehension to read 
documents to find an answer and a data retriever 
component to find relevant documents pertaining to 
a question. 

b) Knowledge Base lookup through popular ontology 
structures as NELL [1], DBpedia [2], Freebase [3], 
and WikiData [4] that allows abstracting semantic 
relationship in questions and potential answers to 
find evidence for best choice. 

c) Long term memory (LTM) / Short term memory 
(STM) structure that allows storing retrieved 
information as a part of agent’s own memory along 
with episodic events for future referencing. 

The agent’s task can thus be put into three simple steps 

Task 0: understanding the question using attentive history, 
coreference, named entity recognition (NER), parts of 
speech (POS), and intent classification. 

Task 1: finding answer(s) to the question based on 
knowledge base lookup, machine reading and memory. 
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Task 2: predicting future turns and pick the best answer that 
optimizes for reward policy as a reinforcement learning 
method. 

The reward policy is built to ensure that the agent succeeds 
in keeping the user engaged with its choice of answer. 

We hope to advance state-of-the art in the following ways: 

• Addressing the issue of conversation agents with no 
commonsense and ethical knowledge 

• A cheaper and more reliable way of finding 
evidence to answers through knowledge-based 
reasoning rather than additional nodes in end-to-end 
deep learning models 

• A deployment ready agent that categorically 
undertakes intellectual conversations rather than 
mere mimicking. 

MOTIVATION 
We choose to build this agent because it’s a yet unexplored 
applied field and feeling alone is a major issue with college 
students [5], yet all companion solutions researched so far 
are specifically tailored for those of older age [6], [7], [8], 
[9]. 

Over the last few years there has been a significant progress 
in end-to-end deep learning based conversational agents 
that essentially learn to mimic human behavior. This means 
that while state-of-the-art agents perform well in answering 
questions or generating fake conversations, they lie 
susceptible to gibberish responses when exposed to 
conversational turns with humans. For example, DialoGPT 
[10] a state-of-the-art single turn conversational agent on 
the popular DSTC-7 [11] challenge when queried, only 
produces sensible responses 1 in 5 times. Such agents are 
clearly not capable of holding intellectual conversations. 
Moreover, since these agents do not deeply understand the 
meaning of what they say, they are highly susceptible to the 
quality of the large text corpus used for training that raises 
ethical concerns of agent behavior when let run in the wild 
[10]. Outputs may reflect gender and other historical biases 
implicit in the data. Responses generated using such models 
may exhibit a propensity to express agreement with 
propositions that are unethical, biased or offensive (or the 
reverse, disagreeing with otherwise ethical statements). 
Microsoft’s Tay [12] is a popular example of practical ethical 
issues present in deploying such deep learning agents on a 
wide scale.  

In contrast, agents relying on knowledge bases (KBs) have 
inherent limitations (incompleteness, fixed schemas) that 
prohibit such systems to produce complete responses on their 
own. 

Finally, most conversational agents tend to produce bald 
responses while playing on the safe side that ensures that 
their responses are grammatically correct and make sense but 
are uninteresting compared to human responses. For 
example, when a user says, “I am going to Kasukabe 

tonight!” end-to-end DL based agents typically respond as 
“Have a great time!” which is uninteresting compared to a 
human response of “You’ll love it! Try Onsake, the best in 
town.” 
BACKGROUND 
There has been a significant progress on conversational 
systems in the past few years. Pertaining to our work on 
human-like human-level conversational agents, this research 
can be categorized into: Sequence to sequence models, open 
domain question answering (QA) based on knowledge base 
(KB), open domain QA based on machine comprehension, 
multi-hop question answering and finally, questions and 
answers in dialogue form. 

Natural Language Processing 

The current state-of-the-art approaches, sequence to 
sequence models of various kinds [13], [14], [15], [16] 
attempt to address some of these skills, but generally suffer 
from an inability to bring memory and knowledge to bear; as 
indicated by their name, they involve encoding an input 
sequence, providing limited reasoning by transforming their 
hidden state given the input, and then decoding to an output. 

Open domain QA based on KB 

Open-domain QA was originally defined as finding answers 
in collections of unstructured documents, following the 
setting of the annual TREC competitions. With the 
development of KBs, many recent innovations have occurred 
in the context of QA from KBs with the creation of resources 
like WebQuestions [17] and SimpleQuestions [18] based on 
the Freebase KB [19], or on automatically extracted KBs, 
e.g., OpenIE triples and NELL [20]. 

Several commonsense knowledge bases have been 
constructed during the past decade, such as ConceptNet [21] 
and SenticNet [22]. The aim of commonsense knowledge 
representation and reasoning is to give a foundation of real-
world knowledge. Typically, a commonsense knowledge 
base can be seen as a semantic network where concepts are 
nodes in the graph and relations are edges. Each <concept1, 
relation, concept2> triple is termed an assertion. Based on 
the Open Mind Common Sense project [23], ConceptNet not 
only contains objective facts such as “Paris is the capital of 
France” that are constantly true, but also captures informal 
relations between common concepts that are part of everyday 
knowledge such as “A dog is a pet”. This feature of 
ConceptNet is desirable in our experiments, because the 
ability to recognize the informal relations 

Open domain QA based on machine comprehension 

A second motivation to cast a fresh look at this problem is 
that of machine comprehension of text, i.e., answering 
questions after reading a short text or story. That subfield has 
made considerable progress recently thanks to new deep 
learning architectures like attention-based and memory 
augmented neural networks [24], [25], [26] and release of 
new training and evaluation datasets like QuizBowl [27], 
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CNN/Daily Mail based on news articles [28], CBT based on 
children books [29], or SQuAD [30] and WikiReading [31],  
both based on Wikipedia and TriviaQA [32]. Chen et al in 
[33] proposed a two stage approach of retrieving relevant 
content with the question, then reading the paragraphs 
returned by the information retrieval (IR) component to 
arrive at the final answer. This “retrieve and read” approach 
has since been adopted and extended in various open-domain 
QA systems [34], [35], but it is inherently limited to 
answering questions that do not require multi-hop/multi-step 
reasoning. This is because for many multi-hop questions, not 
all the relevant context can be obtained in a single retrieval 
step. The QuAC dataset investigates similar themes, but as a 
sequence of questions and answers in dialogue form instead 
[36]. Numerous neural models have been proposed [37], 
[38], [39] and achieved promising performances on several 
different MRC data sets, such as SQuAD, NarrativeQA [40] 
and CoQA [41]. The performance was further boosted after 
the release of the Bidirectional Encoder Representations 
from Transformers (BERT) model [42], which has delivered 
state-of-the-art performance on several RC/QA data sets. 
Most existing research in machine RC/QA focuses on 
answering a question given a single document or paragraph. 
Although the performance on these types of tasks have been 
improved a lot over the last few years, the models used in 
these tasks still lack the ability to do reasoning across 
multiple documents when a single document is not enough 
to find the correct answer [43]. 

Multi-hop question answering  

More recently, the emergence of multi-hop question 
answering datasets such as WIKIHOP [44], QAngaroo [45] 
and HOTPOTQA [46] has led to more interesting work on 
multi-hop QA. Designed to be more challenging than 
SQuAD-like datasets, they feature questions that require 
context of more than one. document to answer, testing QA 
systems’ abilities to infer the answer in the presence of 
multiple pieces of evidence and to efficiently find the 
evidence in a large pool of candidate documents. Qi et al [72] 
recently published Answering Complex Open-domain 
Questions where rather than relying purely on the original 
question to retrieve passages, the central innovation is that at 
each step the model also uses IR results from previous hops 
of reasoning to generate a new natural language query and 
retrieve new evidence to answer the original question. These 
data sets are challenging because they require models to be 
able to do multi-hop reasoning over multiple documents and 
under strong distraction. HotpotQA also encourages 
explainable QA models by providing supporting sentences 
for the answer, which usually come from several documents 
(a document is called “gold doc” if it contains the answer or 
it contains supporting sentences to the answer). To solve the 
multi-hop multi-document QA task, two research directions 
have been explored. The first direction focuses on applying 
or adapting previous techniques that are successful in single-
document QA tasks to multi-document QA tasks, for 
example the studies in [47], [48], [49], [50]. The other 

direction resorts to Graph Neural Networks (GNN) to realize 
multi-hop reasoning across multiple documents, and 
promising performance has been achieved [51], [52], [53], 
[54], [55]. Select, Answer and Explain (SAE) system 
described in [56] solves the multi-document RC problem. 
The system first filters out answer-unrelated documents and 
thus reduce the amount of distraction information. This is 
achieved by a document classifier trained with a novel 
pairwise learning-to-rank loss. The selected answer-related 
documents are then input to a model to jointly predict the 
answer and supporting sentences. The model is optimized 
with a multi-task learning objective on both token level for 
answer prediction and sentence level for supporting 
sentences prediction, together with an attentionbased 
interaction between these two tasks. Evaluated on 
HotpotQA, a challenging multi-hop RC data set, the 
proposed SAE system achieves top competitive performance 
in distractor setting compared to other existing systems on 
the leaderboard. 

However, these implementations for the most part rely on 
Neural response generation, a subcategory of text-generation 
that shares the objective of generating natural-looking text 
(distinct from any training instance) that is relevant to the 
prompt. Most open-domain neural response generation 
systems suffer from content or style inconsistency [57], [58], 
[59], lack of long-term contextual information [60], and 
blandness [61], [62], [63]. 

Questions and answers in dialogue form 

In the domain of open chit-chat, Open-Subtitles [14], 
Persona-Chat [64] and Twitter [65] have tested the ability of 
sequence-to-sequence models that attend over the recent 
dialogue history, but do not attempt to recall long-term 
knowledge beyond encoding it directly into the weights of 
the feed-forward network. Wizards of Wikipedia [71] 
utilizes Memory Network architectures [66] to retrieve 
knowledge and read and condition on it, and Transformer 
architectures [16] to provide state-of-the-art text 
representations and sequence models for generating outputs. 

In the area of non-goal directed dialogue incorporating 
knowledge. [67] employed Memory Networks to perform 
dialogue discussing movies in terms of recommendation and 
open-ended discussion from Reddit, conditioning on a 
structured knowledge base. [68] also links Reddit to 
structured knowledge. Both [69] and [70] use unstructured 
text instead: the former to discuss news articles using 
Wikipedia summaries as knowledge, and the latter to discuss 
local businesses in two-turn dialogues using Foursquare tips 
as knowledge. [70] uses an extended Encoder-Decoder 
where the decoder is provided with an encoding of the 
context along with the external knowledge encoding. 

 
OUTCOMES AND DELIVERABLES 
The outcome we expect from this project is a base 
conversational model that can be replicated and made 
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available to any host user through a texting platform. The 
agent would be able to hold intellectual conversations out-
of-the-box and over time adapt to user preferences such that 
each replication would respond differently to the satisfaction 
of their host user. 

The deliverable would be the base model and an extended 
version trained with a host user. We would also demonstrate 
the model’s intellectual performance on a host of question 
answering challenges. 

Finally, there would be a final paper detailing the workings 
and performance for the proposed agent. 

Future directions include: 

- Blind Turing Test to assess the human-like behavior 
of the model. 

- Empirical research to measure whether the agent 
solves the initially proposed problem of keeping the 
host engaged in intellectual conversations. 

- An embodied agent that can bring physical 
reasoning to its otherwise virtual environment. 
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